R2400

Electronic controller

CONTENTS
Mechanical installation / Preparation. 8
Electrical connection 10
Behavior with switching the auxiliary voltage on 11
Configuration of switching outputs I and II 11
Operation 12
Operating flow diagram „switching controller" 13
Operating flow diagram „continuous and step controller" 14
Off / Manual mode 15
Configuration. 16
Storage and Uploading of Device Settings 18
Controller types 19
Configuration of the controller with continuous output (marking A3) 20
Calibrations 21
Parameter settings 22
Manual optimization. 24
Self-optimization. 28
Set point ramps 29
Heating current monitor 29
Heating circuit monitor 30
Safety features and safety precautions 4 Limit monitoring. 31
Maintenance 5 Alarms 31
Repair and replacement parts service 5 Error messages 32
Identifying the controller 6 Technical data 34

CONTENTS

Page
Meaning of symbols on the controllerCEC conformity mark回

Warning of danger Attention: refer to documentation

Instrument approval

Safety features and safety precautions

The R2400 controller is constructed and tested according to IEC 1010-1 / DIN EN 61010-1 / VDE 0411-1.
If properly used the safety of both the user and the controller is assured.
Read the operating instructions carefully and completely before you use the controller and follow them in all respects.
Please make the operating instructions available to all users.
Please note the following safety precautions:

- The controller must only be installed to a system that corresponds to the nominal range of use (see wiring diagram and nameplate) and which is fused for a max. nominal current of 16 A .
- A switch or power switch must be provided as isolating facility within the installation.

The controller must not be used:

- with obvious external damages
- if it does not work properly any longer
- after prolonged storage under adverse conditions (e.g. moisture, dust, temperature)

In those cases the controller must be taken out of service and secured against accidental use.

Maintenance

Case
Special maintenance of the case is not required. Ensure a clean surface. Use a slightly moist cloth for cleaning. Do not use detergents and scouring agents.

Repair and replacement of parts
Repair or replacement of parts with the controller open and live may only be performed by persons familiar with the dangers involved.

Repair and replacement parts service

When you need service, please contact:

```
GOSSEN-METRAWATT GMBH
```

Service Center
Thomas-Mann-Strasse 20
90471 Nürnberg, Germany
Phone: +499118602-410/256
Fax: $\quad+499118602-253$
e-mail: fr1.info@gmc-instruments.com
This address is only valid in Germany.
Please contact our representatives or subsidiaries for service in other countries.

Identifying the controller

Description					Marking
Electronic controller, front dimensions $48 \times 48 \mathrm{~mm}$ with self-optimization, limit relay, second set point					R2400
Controller version					
Two-state controller with heating current monitor			with rela	output and transistorized output	A1
Three-state controller with heating current monitor / step controller			with 2 relay out	uts and 2 transistorized outputs	A2
Continuous controller / three-state contr. with heating curr. monitor / step controller with continuous output and 2 relay outputs					A3
Step controller with position reedback / three-state controller with 2 relay outputs and 2 transistorized outputs					A4
Measuring ranges					
Thermocouple, configurable	Type J, L	-18 ... $850^{\circ} \mathrm{C} /$	$0 \ldots 1562{ }^{\circ} \mathrm{F}$		
	Type K	$-18 \ldots 1200^{\circ} \mathrm{C} /$	0 ... $2192{ }^{\circ} \mathrm{F}$		
	Type S, R	-18 ... $1770{ }^{\circ} \mathrm{C} /$	0 ... $3218{ }^{\circ} \mathrm{F}$		
	Type B	0 ... $1820{ }^{\circ} \mathrm{C} /$	$32 . . .3308{ }^{\circ} \mathrm{F}$	(Precision spec. from $600{ }^{\circ} \mathrm{C}$)	B1
	Type N	-18 ... $1300{ }^{\circ} \mathrm{C} /$	0 ... $2372{ }^{\circ} \mathrm{F}$		
Resistance thermometer Pt 100		- $100 \ldots 500{ }^{\circ} \mathrm{C} /$	-148 ... $932{ }^{\circ} \mathrm{F}$		
Standard signal, configurable $0 / 2 \ldots 10 \mathrm{~V}$ or $0 / 4 \ldots 20 \mathrm{~mA}$					B2
Auxiliary voltage					
AC 230 V - $\mathrm{Cl} \rightarrow \mathrm{C} 2$, and/orC2 $\rightarrow \mathrm{Cl}$		I plug change possible			C1 C 2
AC 24 VDC 24 V					C3
					C4

	German / English	D0
	French / Italian	Done
Presetting		D2
Standard setting	K0	
Configured to customer's specifications		K9
Customer-specific front film on request		

Changing the auxiliary voltage you must mark the correct voltage on the nameplate (module) and connection diagram (case)!
Bild 1, Changing the auxiliary voltage $\mathrm{C} 1 \leftrightarrow \mathrm{C} 2$

Mechanical installation / Preparation $\widehat{\wedge}$

Bild 2, Case dimensions and panel cutout

The controller R2400 is meant for panel installation. The mounting site should not vibrate. Aggressive vapors reduce the service life of the controller. Note the VDE 0100 specifications. Work on the controller must only be performed by a person who is familiar with the danger involved.

From the front, slide the case into the panel cutout and at the rear tighten it at the top and bottom with 2 screw clamps. The moment of screw tension is typically 10 Ncm and should not exceed 20 Ncm .
Several controllers can be installed side-by-side without intermediate bars. In this case the gaskets supplied for meeting the protection class IP 54 cannot be used. The protection class IP 54 is only ensured with a depressed rotary knob.

Unobstructed air-flow is to be provided in general when installing one or more controllers. Below the controllers the ambient temperature must not exceed $50^{\circ} \mathrm{C}$.

Withdraw the controller module (e.g. for setting of the DIP switch):

- At the front, hold the module between thumb and forefinger at the grip and the diaphragm (pressure on the diaphragm unlocks the module)
- Pull firmly

Locking of the two screw clamps (top and bottom of case):

- Shift in direction 1 up to the stop
- Shift in direction 2 up to the stop

Location of the 5-pin DIP switch

Standard setting all switches "off" (switch lever at the top)

Bild 3, Case fasteners and location of the DIP switch

Electrical connection

Connection elements: Screw terminals suitable for standard wire $1.5 \mathrm{~mm}^{2}$ and/or twin-wire multi-core cable ends for $2 \times 0.75 \mathrm{~mm}^{2}$

Configuration of switching outputs I and II

 (not with marking A3)Switching output I

12345

Relay

Transist. output

Switching output II

12345

Bild 4, Location of the connection contacts

Behavior with switching the auxiliary voltage on

approx. 2 s

Actual configuration

Actual value

Operation

Bild 5, Operating controls

Value setting with rotary knob

- Slightly turning the knob does not change the set value in order to prevent accidental adjustment.
- The rate of change of the setting value is determined by moving the knob further to the right or left against the integral spring tension.
- When released, the rotary knob returns to the center position.
- Small changes to the setting can be made by turning the knob within the middle (vernier) range.
- After 2.5 s or after pressing a key the value is stored and active. A short blanking of the display signals this condition.

Operating flow diagram „switching controller"

Operating flow diagram „continuous and step controller"

 OPERATING LEVEL

Off / Manual mode

OPERATING LEVEL SWITCHING CONTROLLER

- No alarm function
- No error signalling

- Alarm function and error signalling same as automatic.
- The position outputs are not controlled by the control function, but with the rotary knob.
- Manual / automatic switch-over is bumpless in both directions.
- Continuous controller: The regulation ratio is displayed in \%. Changes in values are slowly made in the spring ranges of the rotary knob and are immediately passed to the controller outputs.
- Step controller: By turning the knob to the right/left in the spring range the
- The positioning outputs are inactive when the rotary knob is not operatec
- The switching output I („Heat") / II („Cool") is directly controlled when turning the knob to the right / left

OPERATING LEVEL CONTINUOUS AND STEP CONTROLLER

> switching output I (more) / II (less) is directly controlled. With the reedback available (marking A4) the measured position is displayed in \%; for marking A2, A3 lines are displayed. .

Configuration

1) Switching form ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$ only active with code B 1
2) Only active with code 3

Storage and Uploading of Device Settings

Code	Function	Note
d	The current setting ${ }^{1)}$ is stored as a user defined default setting.	Configuration according to customer specifications (K9) is stored in this location and is thus overwritten.
E	The user defined default setting is uploaded 1). If a setting has never previously been stored with d, the factory default setting, or the configuration in accordance with customer specifications (K9), is uploaded.	All entries are overwritten, including the results of self- optimization and calibration.
F	The factory default setting ${ }^{1)}$ is uploaded.	

1) Configuration digits and all parameters except for the interface address Addr.

Controller types

Code	Controller type	Remarks
0	Limit monitor	Switching output I is active, if act. value < actual set point, switching output II is active, if actual value > actual set point + dbnd. The switching hysteresis is $\pm 0.25 \%$ of the measuring range span. A change of the switching state can be made every tc.
1	Positioner	Output of a constant positioning signal to switching output I, if Y ST >0, to switching output II, if Y ST <0. The positioning cycle is tc. No alarm functions.
2	2-state controller „Heat"	A PDPI control algorithm without overshoot controls the switching output I in order to increment / decrement the
\exists	2-state controller „Cool"	actual value. The positioning cycle is at least tc.
4	Three-state controller	A PDPI control algorithm without overshoot controls the switching output I in order to increment the actual value and/or the switching output II to decrement the actual value. The positioning cycle is at least tc. The deadband dbnd suppresses a change between "Heat" and "Cool", without offset.
5	Three-state controller Water cooling	The regulation ratio of the switching output II is matched to the non-linear behavior of a water cooler. The positioning cycle is tc.
6	Step controller	A PDPI control algorithm without overshoot controls the switching output I and/or II in order to increment/decrement the actual value. The positioning pulse width is tc . The deadband dbnd is symmetric to the set point.

Configuration of the controller with continuous output (marking A3)

Continuous output = regulation ratio (configuration digit „sensor dimension / continuous output" $=4$... 7)
The different continuous controller types result of the configuration digit „controller type".

Code	Controller type	Remarks
\mathbf{Z}	Limit monitor	Output of a regulation ratio adjustable with parameters Y H when actual value < set point value
$\mathbf{1}$	Positioner	Output of a regulation ratio adjustable with the parameter Y St

Continuous output = actual value (configuration digit "Sensor dimension / continuous output" $=0$... 3)
The controller types for marking A2 and marking A3 are identical.

Calibrations

Thermocouple correction (parameter CAL)
The setting of the corrected value is in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$. The displayed correction value is added to the measuring temperature value.
Lead balancing with Pt 100 2-wire connection (parameter CAL)
Balancing can be defined automatically in „Off / Man":

- Short sensor at the site of application
- Set CAL value to Auto

The measured lead resistance is converted into a temperature charge and entered as CALvalue.
With a known sensor temperature balancing can also be made manually: CAL = known sensor temp. - displayed temp.

Scaling of the heating current monitor (parameter A H)

The standard setting for GTZ 4121 is 42.7 A. If the current transformer is not used for acquisition of the heating current, the value at which the transformer GTZ 4121 is used provides 10 V DC is to be set.

Calibration of the display of the positive position reedback (parameter Y100, Y 0)
Calibration is made in manual mode in the parameter level when configured as step controller (configuration digit „controller type" $=6$):

1. Select parameter Y 100. At first the stored value appears: a standardized value between 0 and 255

The rotary knob held at the right stop increases the switching output I and the display gives the actual measured position of the controller element.
Keep the rotary knob at the right stop until the correct display is obtained. The displayed value is stored.
2. Select parameter Y 0 .

Proceed same as for parameter Y 100. In this case keep the rotary knob at the left stop. It serves to decrease the switching output II.
Y 100 must be higher than Y 0 !
In automatic mode the parameters Y 100 and Y 0 are only displayed.

Parameter settings

		$\begin{aligned} & X 1=\text { Lower range limit } \\ & \text { X2 = Upper range limit } \end{aligned}$	＊ $\mathrm{MBU}=$ range span $=\mathrm{X} 2-\mathrm{X} 1$		
Parameters	Display	Range	Standard	Comment	
High limit	Hi H	OFF， 1 ．．．MBU＊ X1 ．．．X2	$\begin{aligned} & \text { OFF } \\ & \text { XI } \end{aligned}$	relative（＝standard config．） absolute	Parameter disabled with DIP switch setting
Upper limit	Hi L	$\begin{aligned} & \text { OFF, } 1 \ldots \text { MBU * } \\ & \text { X1 ... X2 } \end{aligned}$	$\begin{aligned} & \text { OFF } \\ & \text { X1 } \end{aligned}$	relative（＝standard config．） absolute	
Second set point	$5 \square \square$	SP L ．．．SP H	X1		
Ramp for increasing set points	$5 \sim \square$	OFF， $1 \ldots$ MBU＊per min	OFF		$\begin{aligned} & \begin{array}{l} \theta \\ \theta \end{array} \square \square \\ & 12 \end{aligned}$
Ramp for decreasing set points	5 －	OFF， $1 \ldots$ MBU＊per min	OFF		
Set point of heat．curr．（s．calibrat．）	H755	Auto，oFF， $0.1 \ldots \mathrm{~A} \mathrm{H}$	OFF	not for step controller 1）	
Proportional band heating	P1，	0.1 ．．．999．9 \％	10.0		Parameter disabled with DIP switch setting
Proportional band cooling	$\square \square 1 i$	0.1 ．．．999．9 \％	10.0	only with 3－state contr．${ }^{2)}$	
Dead zone	ロロாロ	0 ．．．MBU＊	OFF	not with 2－state contr．3）	setting
Delay time of the controlled system	Lu	$0 \ldots 9999$ s	100		
Output cycle time	LE	$0.5 \ldots 600.0 \mathrm{~s}$	10.0	4）	and during self－ optimization
Motor running time	늬	$5 \ldots 5000$ s	60	only with step controller 5）	

Max. set point	$5 \square \quad H$	SP L ... X2	X2		Parameter disabled with DIP switch setting
Min. set point	$5 \square 1$	X1 ... SP H	X1		
Max. regulation ratio	4 H	- $100 . . .100 \%$	100	0 ... 100 with marking A1	
Calibration actual value (s. calibrat.)	LHL	$\begin{aligned} & \text { - MBU */ } 4 \ldots+\text { MBU } * / 4 \\ & \text { Auto, }- \text { MBU */4... }+ \text { MBU */4 } \end{aligned}$	0	only when B1, thermocple only when B1, Pt100	
Position decimal point	-®TE	9999, 999•9, 99•99, 9.999	9999	only with marking B2	
Upper range limit stand. signal	$\Gamma \Pi \quad 1$	rn L... 9999	100		
Lower range limit stand. signal	$\Gamma \Pi \quad L$	-1500...rn H	0		12345
Upper ran. lim. heat. curr. (s. calib.)	$H \quad H$	1.0 ... 99.9 A	42,7	not for step controller ${ }^{1)}$	and during selfoptimization
Calibration position reedback	$\begin{array}{lll} 4 & 176 \\ 4 & 7 \end{array}$	see calibrations		only for step controller with position reedback ${ }^{6)}$	
Reg. ratio for positioner	근	-100... 100%	0	$0 \ldots 100$ with marking A1	
Reg. ratio for sensor error	¢ 〕E	$-100 \ldots 100 \%$	0	$0 \ldots 100$ with marking A1	
1) only for: marking $\neq \mathrm{A} 4$ and configuration digit „controller type" $\neq 6$					
2) only for: marking $\neq \mathrm{Al}$ and configuration	configuration digit "controller type" $\neq 6$configuration digit "controller type" $=4$ or 5				All parameters free for DIP switch setting
3) only for: marking $\neq \mathrm{Al}$ and configura	actual value filter for continuous action controller (controller type $=2.3$). tc $=$ time constant				
5) only for: marking $\neq A 1$ and configura 6) only for: \quad marking $=A 4$ and configura					
	configuration digit "controller type" = 6 configuration digit "controller type" $=6$				

Manual optimization

With manual optimization the parameters $\mathrm{Pb} \mathrm{I}, \mathrm{Pb} \mathrm{II}$, tu and tc are determined to obtain optimum control dynamics. For this purpose a start-up or oscillation test is performed.

Preparation

- Complete configuration (page 16) and Parameter setting (page 22) must be made before the controller is put in operation.
- The control elements should be deactivated by Off / Manual mode (page 15).
- A recorder must be connected to the sensor and set in line with the dynamics of the control system and the set point.
- The on and off time of the switching output I and/or the continuous output of three-state and/or split-range controllers must be recorded (e.g. with a further recorder channel or with a timer).
- Configure limit monitor (controller type code $=0$).
- Set the output cycle time to minimum: tc $=0.5$.
- If possible disconnect the limitation of regulation ratio: $\mathrm{Y} \mathrm{H}=100$.
- Decrease the set point (and/or increase) so that the over- and undershoot will not take impermissible values.

Start-up trial

- Set dbnd = MBU on three-state and/or split-range controller (switching output II must not respond).

Set dbnd $=0$ on step controller (switching output II must respond)

- Start recorder
- Activate the control elements with automatic mode.
- Record 2 overshoots and 2 undershoots. Start-up trial is finished for two-state controller, continuous and step controller. Proceed as follows for three-state controller and/or split-range controller:
- Set dbnd = 0 to cause further oscillations by active switching output II, wait for two over- and undershoots.
- Record the on time T_{\mid}and off time $T_{\| \mid}$of the switching output I and/or the continuous output of the last oscillations.

Valuation of the start-up trial

- Apply the tangent to the intersection P of the actual value with the set point and/or the switch- off point of the output.
- Measure the time $\Delta \mathrm{t}$.
- Measure the oscillation width x_{ss}, on step controller overshoot $\Delta \mathrm{x}$.

	Parameter values						
tu	1.5 • $\Delta \mathrm{t}$				$\Delta \mathrm{t}-\mathrm{(tY} / 4)$		
tc	tu / 12				tY / 100		
Pb I	$\left(x_{\text {SS }} / \mathrm{MBU}\right) \cdot 100 \%$		$\left(x_{\text {SS }} /\right.$ MBU) $\cdot 200 \%$		$(\Delta x / M B U) \cdot 50 \%$		
Pb II	-	$\mathrm{Pb} \mathrm{I} \cdot\left(\mathrm{T}_{1} / \mathrm{T}_{\\|}\right)$	-	$\mathrm{Pb} \mathrm{I} \cdot\left(\mathrm{T}_{1} / \mathrm{T}_{\\|}\right)$			
Parameter	Two-state controller	Three-state contr.	Continuous contr.	Splitrange controller	Step controller		
Correct the p Y H positivi Y H nega	and if a limitation of the Pb I by 100% / Y H Pb II by-100 \% / Y	gulation ratio was set					

Perform an oscillation test

If a start-up trial is not possible, e.g. if adjacent control loops excessively influence the actual value or if the active switching output II is required to maintain the actual value (working point cool), or if it is required to optimize to the set point for special reasons, the control parameters can be determined from continuous oscillations. The calculated value for tu is, however, eventually not exact.

- Preparation as above. The test can be made without recorder when the actual value can be checked on the display and the times via a timer.
- Set dbnd $=0$ on three-state controller, split-range and step controller.
- Activate the control elements in automatic mode, eventually start recorder. Record several oscillations until they are of like magnitude.
- Measure oscillation width $x_{5 s}$.
- Record the on time T_{\mid}and off time $T_{| |}$of the switching output I and/or of the continuous output of the oscillations.

Valuation of the oscillation test

Parameter values

| tu 1) | 0.3 - ($\left.T_{1}+T_{11}\right)$ | | | | 0.2 • ($\left.T_{1}+T_{\\| \mid}-2 t Y\right)$ | | | |
|---|---|---|---|---|---|---|---|---|---|
| tc | tu / 12 | | | | tY / 100 |
| Pb I | $\frac{x_{\text {S }} \cdot 100 \%}{\text { MBU }}$ | $\frac{x_{s 5} \cdot T_{\\|} \cdot 100 \%}{\operatorname{MBU}\left(T_{1}+T_{\\|}\right)}$ | $\frac{x_{5 s} \cdot 200 \%}{M B U}$ | $\frac{x_{5 S} \cdot T_{\\|} \cdot 200 \%}{\operatorname{MBU}\left(T_{1}+T_{\\|}\right)}$ | $\frac{x_{s 5} \cdot 50 \%}{\text { MBU }}$ |
| Pb II | - | $\operatorname{Pb} 1 \cdot\left(T_{1} / T_{\\| \\|}\right)$ | - | $\operatorname{PbI} \cdot\left(T_{1} / T_{\\|}\right)$ | - |
| Parameter | Two-state controller | Three-state contr. | Continuous contr. | Splitrange controller | Step controller |
| With one | remely higher than the other or | high a value for tu will | | | |

Correction for step controller if one of the times T_{1} or $T_{\|}$is smaller than Y :
Multiply Pb I by $\quad \frac{t Y \bullet t Y}{T_{1} \bullet T_{I}}$, if T_{1} is smallest and by $\frac{t Y \bullet t Y}{T_{\|} \cdot T_{\|}}$, if $T_{\|}$is smallest.
The value for tu is not exact in this case. It should be re-optimized in control mode.
Control mode
After optimizing control mode is active:

- Configure the desired control algorithm in control mode.
- Set the set point to the required value.
- On three-state controller, split-range and step controller the deadband can be increased from dbnd $=0$ if control of the switching outputs I (and/or continuous output) and II changes rapidly e.g. due to an unstable actual value.

Self-optimization

The self-optimization serves to determine an optimal control dynamic that is the parameters $\mathrm{Pb} \mathrm{I}, \mathrm{Pb} \mathrm{II}$, tu and tc are determined.
Preparation

- Prior to starting the self-optimization the complete configuration must be made
- Set the set point to the value required after optimization.

Start

- Simultaneous pressing of the two keys in the operating level (automatic or manual / off) initiates self-optimization. It cannot be started in the "positioner" or „limit monitor" mode
- The display of tunE flashes on all levels during the optimization run
- The controller returns to automatic mode after successful optimization.
- With the three-state controller (controller type = 4 and 5) cooling is activated when the high limit responds to avoid overheating. Self-optimization then conducts an oscillation test in proximity to the set point.

Procedure

- The actual set point at the start remains valid; it cannot be changed
- Activation / deactivation of the second set point is disabled
- Adjusted set point ramps are not considered
- When starting in the working point (actual value about set point) overshoot cannot be prevented.

Stop

- Optimization can be stopped at any time with $(\rightarrow$ automatic mode) and/or by switching over to man /off with
- If an error occurs during optimization the controller does not issue a positioning signal. Optimization must be stopped. More information on request.

When supplied (standard setting KO) self-optimization is enabled. Disabling via DIP switch:

Set point ramps

\(\left.\begin{array}{ll}Function \& The parameters SPuP / SPdn cause a gradual change in temperature (rising / falling) in degrees per minute.

Activated when:

\& - Switching on the auxiliary voltage

- Changing the actual set point and activating the second set point

- Changing from manual to automatic mode\end{array}\right\}\)| The target set point, not the actual one is displayed. |
| :--- |
| Limit values | | Relative limit values make reference not the ramp, not the target value. For this reason no alarm is triggered |
| :--- |
| as a rule. |

Heating current monitor

Function	The acquisition of the heating current is made with the external transformer (e.g. GTZ 4121).
An alarm message shows if the measured current falls more than 20% below the expected current (set point AMPS) when	
the heater is switched on, or when current is still flowing with the heater switched off. The alarm is cleared only when, with	
active output, the heating current is high enough and no current flows with an inactive output I.	
Monitoring is inactive, when the controller is switched OFF and when continuous and step controller.	
Curr. set point AMPS	For this parameter enter the nominal current of the heater. For automatic setting set AMPS to Auto with the heater switched on. The actually measured current is stored.

Heating circuit monitor

Function

- Active / inactive configurable with configuration digit „alarm" (see configuration)
- Without external transformer, without additional parameters
- Under the condition set correct optimization of the controller parameters tu and Pb I!
i.e. before self-optimization is started, heating circuit monitoring must be activated.

The lower limit for the tu parameter must be maintained for manual optimization or subsequent adjustment of the control parameters:
minimum tu $=\frac{\mathrm{Pb} \mathrm{I}}{50 \%} \cdot \frac{\mathrm{MBU}}{\Delta \vartheta / \Delta t}$
$\Delta \vartheta / \Delta t=$ maximum temperature rise during start-up
-The error message LE appears, when the heater is switched on 100% and the measured increase in temperature is too low.
-Monitoring is not active, when the controller type = limit monitor, positioner or continuous controller during self-optimization when standard signal input (marking B2) if the limitation of regulation ratio $\mathrm{Y} \mathrm{H}<20 \%$

Limit monitoring

Alarm relay NOC Alarm relay NCC Limit values relative

Start-up suppression: Alarm suppression is active as start-up (configuration digit „alarms") until the temperature exceeds the low limit for the first time. When cooling the suppression is active until the high limit is fallen below for the first time. It is active when switching on the auxiliary voltage, changing the actual set point and activating the second set point as well as when changing from Off \rightarrow Automatic.

Alarms

Display (only in operating level)	Error source	Reaction
Heating current flashes	Heating current monitor	Alarm output A1 active (open circuit and closed circuit contact defined in the configuration digit „Alarms", see configuration on page 16) and LED A1 flashes on all levels
Actual value flashes	Limit monitor	and

During parameter setting or configuration the operation level is entered 30 s after the value setting was terminated.

Error messages

Reactions in case of error:

1. the alarm output A 1 is activated; the configuration digit „alarm" defines its behavior (see configuration on page 16)
2. the LED A1 flashes on all levels, add. information (flashing display) is only given on the operating level (upper display flashes))
3. during parameter setting or configuration the operation level is entered 30 s after the value setting was terminated.
4. see the following table for exceptions and further information.

Display		Error source	Reaction			Procedure
SEH	sensor error high	Sensor breakage or actual value > upper range limit	contr. type	Uutput	ulation ratio	1
				$Y S E=-100 / 0 / 100 \%$	YSE $=-100 / 0 / 100 \%$	
			2-, 3-state	-100/0/100\%	If controller in stable state: last "plausible" reg. ratio, if not: YSE	
SE	sensor error low	Wrong polarity of sensor or actual value < lower range limit	Step	Controller outputs I and II inactive		
			Limit signal	YSE		
			Positioner	No error reaction		
$[E$ Heating curr.	current error	Wrong polarity of current transformer, unsuited or unserviceable	Same as alarm of heating current monitor Cont.			2
ЧE Adj. level	y error	Position reedback beyond calibration; Y $100 \leq$ Y 0	No error reaction			3
Пロ E	no tune	Self-optimization cannot be started (controller type „positioner" or "limit monitor")	No error reaction Error message remains until the key is pressed			-

$L E$	tune error 2	Disturbance of an optimization run in step 1 ... 9 (here step 2)	Controller outputs I and II inactive Self-optimization must be stopped	4
$L E$	loop error	Measured temperature too low with the heater switched on 100 \%	Controller outputs I and II inactive Error message remains until the key is pressed	5
$P E$	parameter error	Outside permitted limits	Controller outputs I and II inactive The parameter level is disabled	6
dE	digital error	Error recognized by monitoring of the digital unit monitor	Controller outputs I and II inactive	7
AE	analog error	Error recognized by monitoring of the analog unit monitor	Controller outputs I and II inactive	7

Procedures

1. Eliminate sensor error
2. Check current transformer
3. Potentiometer for position reedback: check connection, re-calibrate
4. Correct faults that impair the optimization run such as e.g. sensor error
5. Closing the control loop: check the sensor function, control elements and the heater.
Check correlation between sensor and heater (wiring).
Correct optimization of the controller parameters tu and Pb I .
6. Run default configuration and default parameters, and then re-configure and reset parameters, or upload user defined default setting.
7. Repair by the corresponding service center.

Technical data

Climatic suitability in reference to VDI/VDE 3540			$3 z / 0 / 50$
Annual average of rel. humidity, no condensation			75 \%
Ambient temperature Nominal range of use Operational range Storage range			$\begin{array}{r} 0^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C} \end{array}$
Aux. voltage	Nominal range of use		Power consumption
Nom. value	Voltage	Frequency	
AC 110 V AC 230 V AC 24 V	AC 95 V ... 121 V AC 196 V... 253 V AC $21 \mathrm{~V} \ldots 26 \mathrm{~V}$	$48 \mathrm{~Hz} \ldots 62 \mathrm{~Hz}$	max. 7 VA typically 4.5 W
DC 24 V	DC $20 \mathrm{~V} \ldots 30 \mathrm{~V}$	-	
Relay output		Potential-free working contact (NOC), phase commun to switching output I and II	
Switching capacity		AC/DC 250 V, 2 A, $500 \mathrm{VA} / 50 \mathrm{~W}$	
Life span		$>2 \bullet 10^{5}$ duty cycles under nominal load	
Interference		Provide ext. RC element ($100 \Omega-47 \mathrm{nF}$) on the contactor	

Transistorized output suited for commercially available solid state relays (SSR)		
Switching condition	No load voltage	Output current
Active (load $\leq 800 \Omega$)	$<$ DC 17 V	$10 \ldots 15 \mathrm{~mA}$
Inactive	$<$ DC 17 V	
Overload limit	Short-circuit, continuous interruption	
Electrical safety	II, panel controller acc. to DIN EN 61010-1 point 6.5.4	
Protection class	2, acc. to DIN EN 61010-1 point 3.7.3.1 and/or IEC 664	
Pollution degree	II, acc. to DIN EN 61010 appendix J and/or IEC 664	
Overvoltage category	300 V acc. to DIN EN 61010	
Operating voltage	DIN EN 50081-2	
EMC emission	DIN EN 50082-2	
EMC immunity		

See data sheet with ordering number 14451

Phone +49 911 8602-0
Fax +49911 8602-669
e-mail: info@gmc-instruments.com
http://www.gmc-instruments.com

